
Echo Hiding

Daniel Gruhl Anthony Lu

Walter Bender Massachusetts Institute of Technology Media Laboratory

Abstract. Homomorphic signal-processing techniques are used to place

information imperceivably into audio data streams by the introduction of

synthetic resonances in the form of closely-spaced echoes. These echoes

can be used to place digital identi�cation tags directly into an audio

signal with minimal objectionable degradation of the original signal.

1 Introduction

Echo hiding, a form of data hiding, is a method for embedding informa-

tion into an audio signal. It seeks to do so in a robust fashion, while not

perceivably degrading the host signal (cover audio).1 Echo hiding has ap-

plications in providing proof of the ownership, annotation, and assurance

of content integrity. Therefore, the data (embedded text) should not be

sensitive to removal by common transforms to the stego audio (encoded

audio signal), such as �ltering, re-sampling, block editing, or lossy data

compression.

Hiding data in audio signals presents a variety of challenges, due in part

to the wider dynamic and di�erential range of the human auditory sys-

tem (HAS) as compared to the other senses. The HAS perceives over a

range of power greater than one billion to one and a range of frequencies

greater than one thousand to one. Sensitivity to additive random noise

is also acute. Perturbations in a sound �le can be detected as low as one

part in ten million (80dB below ambient level). However, there are some

\holes" available in this perceptive range where data may be hidden.

While the HAS has a large dynamic range, it often has a fairly small dif-

ferential range. As a result, loud sounds tend to mask out quiet sounds.

Additionally, while the HAS is sensitive to amplitude and relative phase,

it is unable to perceive absolute phase. Finally, there are some environ-

mental distortions so common as to be ignored by the listener in most

cases.

A common approach to data hiding in audio (as well as in other media)

is to introduce the data as noise. A drawback to this approach is that

lossy data compression algorithms tend to remove most imperceivable

artifacts, including typical low dB noise. Echo hiding introduces changes

1 The adjectives cover, embedded, and stego were de�ned at the Information Hiding

Workshop held in Cambridge, England. The term \cover" is used to describe the

original signal. The informatio (data) to be hidden in the cover signal was de�ned

to be the \embedded" signal. The \stego" signal is the signal containing both the

\cover" signal and the \embedded" information. The word signal can be replaced by

more descriptive terms such as audio, text, stills, video, etc.



to the cover audio that are characteristic of environmental conditions

rather than random noise, thus it is robust in light of many lossy data

compression algorithms.

Like all good stegonagraphic methods, echo hiding seeks to embed its

data into data stream with minimal degradation of the original data

stream. By minimal degradation, we mean that the change in the cover

audio is either imperceivable or simply dismissed by the listener as a

common non-objectionable environmental distortion.

The particular distortion we are introducing is similar to resonances

found in a room due to walls, furniture, etc. The di�erence between

the stego audio and the cover audio is similar to the di�erence between

listening to a compact disc on headphones and listening to it from speak-

ers. With the headphones, we hear the sound as it was recorded. With

the speakers, we hear the sound plus echoes caused by room acoustics.

By correctly choosing the distortion we are introducing for echo hiding,

we can make such distortions indistinguishable from those a room might

introduce in the above speaker case.

Care must be taken when adding these resonances however. There is a

point at which additional resonances severely distort the cover audio.

We are able to adjust several parameters of the echoes giving us con-

trol over both the degree and type of resonance being introduced. With

carefully-selected parameter choices, the added resonances can be made

imperceivable to the average human listener. Thus, we can exploit the

limits of the HAS's discriminatory ability to hide data in an audio data

stream.

2 Applications

Protection of intellectual property rights is one obvious application of

any form of data hiding. Echo hiding can place a digital signature re-

dundantly throughout an audio data steam. As a result, a reasonable

level of hidden information is maintained even after operations such as

extracting or editing. This information can be, but is not limited to,

copyright information. With redundantly placed copyright information,

unauthorized use of protected music becomes easy to demonstrate. Any

clipped portion of an stego audio will contain a few copies of the digi-

tal signature (i.e. copyright information). Even \sound bites" distributed

over the internet can be thus protected. Before placing an original sound

bite on a web site, the creator can quickly run the Echo Hiding encoder.

The creator can then periodically send out a web crawler which decodes

all sound bites found, and reporting if the given signature is in them.

For such applications, detection and modi�cation of the embedded text

must be limited to only a select few. The embedded text is only for the

bene�t of the encoder and is of little use to the end user. We would like

it to be immune to removal by unauthorized parties. With the correct

parameters, echo hiding can place the data with a very low probability

of unauthorized interception or removal.

Another application of audio data hiding is the inclusion of augmentation

data. In most cases, this type of data is placed for the bene�t of the end



user. As such, detection rules are more lenient. Since the data is there

for the bene�t of all, malicious tampering of the data is less likely. Echo

hiding can be used to non-objectionably hide data in these scenarios also.

We can place the augmentation data directly into the cover audio in a

binary format. One bene�t of our technique is that annotations normally

require additional channels for both transmission and storage. By hiding

the annotations as echoes in the cover audio, the number of required

channels can be reduced.

While the inclusion of augmentation data does not require strict con-

trol over detection by third parties, echo hiding provides a low intercep-

tion rate as an option. The uses of augmentation data include closed-

captioning (of radio signals and CD's, etc.) and caller-id type applica-

tions of telecommunications systems. With echo hiding, the sound signal

could contain both the audio information and the closed-captioning. A

decoder can then take that signal and output the audio or display the

captioning.

More interesting examples are caller-id and secure phone lines. We can

use echo-hiding techniques to place caller information during a phone

call. A decoder on the receiving end can detect this information revealing

who the caller is and displaying other supplemental data (i.e., client

information, client history, location of caller, etc.). The information is

attached to the callers voice and is independent of the phone or phone

service used. In contrast, current caller-id schemes only reveal the number

of the device from which the call is placed. With echo hiding, it is possible

to attach the information directly to the voice. As such, we have a form of

voice identi�cation and voice authentication. This can be useful in large

conference calls when many people may try to talk, and identi�cation of

the current speaker is di�cult due to low bandwidth. Phone calls which

require a high degree of assurance of the identity of either party (e.g.

oral contracts between an agent and employer) can also bene�t from this

application of echo hiding.

Echo hiding can also be useful to companies dealing with assuring that

audio is played, for example radio commercials. For instance, when a

radio station contracts to play a commercial, it can be di�cult to know

with certainty that the commercial is indeed being played as frequently

as contractually agreed upon. Short of hiring someone to listen to the sta-

tions 24 hour a day, there is little one can do. Using echo hiding, we can

place a \serial number" in the commercial. A computer can be set up to

\listen" to the radio station, check for the identi�cation number, and keep

a tally of the number of times the commercial was played and how much

of it was played (played in its entirety, cut o� half way through, etc.).

Echo hiding can also be useful when a radio station is multi-a�liated.

Given similar commercials by two di�erent companies, the radio station

is by law required to play the tape given by each company in order to

count for advertising by each company. This holds true even if the com-

mercials are identical. By encoding each commercial using echo hiding

techniques, the companies can keep track of which commercial is played.

We can encode identical commercials with a di�erent signature for each

company.

Finally, tamper-proo�ng (prevention of unauthorized modi�cation) can



also be accomplished using echo hiding. A known string of digital iden-

ti�cation tags can be placed throughout the entirety of the cover audio.

The stego audio can easily be checked periodically for modi�ed and/or

missing tags revealing the authenticity of the signal in question.

3 Signal Representation

In order to maintain a high quality digital audio signal and to minimize

degradation due to quantization of the cover audio, we use the 16-bit

linearly quantized Audio Interchange File Format (AIFF). Sixteen-bit

linear quantization introduces a negligible amount of signal distortion

for our purposes, and AIFF �les contain a superset of the information

found in most currently popular sound �le formats. Various temporal

sampling rates have been used and tested, including 8 kHz, 10 kHz,

16 kHz, 22.05 kHz, and 44.1 kHz. Our methods are known to yield an

acceptable embedded text recovery accuracy at these sampling rates.

Embedded text is placed into the cover audio using a binary representa-

tion. This allows the greatest 
exibility with regards to the type of data

the process can hide. Almost anything can be represented as a string of

zeroes and ones. Therefore, we limit the encoding process to hiding only

binary information.

4 Parameters

Echo Data Hiding places embedded text in the cover audio by introducing

an \echo." Digital tags are de�ned using four major parameters of the

echo: initial amplitude, decay rate, \one" o�set, and \zero" o�set (o�set

+ delta) (Figure 1). As the o�set (delay) between the original and the

echo decreases, the two signals blend. At a certain point the human ear

hears not an original signal and an echo, but rather a single distorted

signal. This point is hard to determine exactly. It depends on the quality

of the original recording, the type of sound being echoed, and the listener.

In general, we �nd that this fusion occurs around one thousandth of a

second for most sounds and most listeners.

The coder uses two delay times, one to represent a binary one (\one"

o�set) and another to represent a binary zero (\zero" o�set). Both delay

times are below the threshold at which the human ear can resolve the

echo and the cover audio as di�erent sources. In addition to decreasing

the delay time, we can also ensure that the distortion is not perceivable

by setting the echo amplitude and the decay rate below the audible

threshold of the human ear.

5 Encoding

The encoding process can be represented as a system which has one of

two possible system functions. In the time domain, the system functions



original signal

"one"
echo amplitude

"zero"

decay rate
echo amplitude)

(fraction of

deltaoffset

Fig. 1. Adjustable parameters

Fig. 2. Discrete time exponential

we use are discrete time exponentials (as depicted in Figure 2) di�ering

only in the delay between impulses.

In this example, we chose system functions with only two impulses (one

to copy the cover audio and one to create an echo) for simplicity.

We let the kernel shown in Figure 3(a) represent the system function

for encoding a binary one, and we use the system function de�ned in

Figure 3(b) to encode a zero. Processing a signal with either system

function will result in an encoded signal (see example in Figure 11).

The delay between the cover audio and the echo is dependent on which

kernel or system function we use in Figure 4. The \one" kernel (Fig-

ure 3(a)) is created with a delay of �1 seconds while the \zero" kernel

(Figure 3(b)) has a �0 second delay. In order to encode more than one

bit, the cover audio is \divided" into smaller portions. Each individual

portion can then be echoed with the desired bit by considering each as

an independent signal. The stego audio (containing several bits) is the

recombination of all independently encoded signal portions.

In Figure 5, the example signal has been divided into seven equal por-

tions labeled a, b, c, d, e, f, and g. We want portions a, c, d, and g to

contain a one. Therefore, we use the \one" kernel (Figure 3(a)) as the

system function for each of these portions i.e. each is individually con-

volved with the appropriate system function. The zeroes encoded into



(a) "one" kernel

1

(b) "zero" kernel

0
δδ

Fig. 3. Echo kernels

original signal

  signal

original

 kernal
b

h(t) output

original

echo

output
b

δ δ

Fig. 4. Echoing example

sections b, e, and f are encoded in a similar manner using the \zero"

kernel (Figure 3(b)). Once each section has been individually convolved

with the appropriate system function, the results are recombined. While

this is what happens conceptually, in practice we do something slightly

di�erent. Two echoed versions of the cover audio are created using each

of the system functions. This is equivalent to encoding either all ones or

all zeroes. The resulting signals are shown in Figure 6.

In order to combine the two signals, two mixer signals (Figure 7) are

created. The mixer signals are either one or zero (depending on the bit

we would like to hide in that portion) or in a transition stage in-between

sections containing di�erent bits.

The \one" mixer signal is multiplied by the \one" echo signal while the

\zero" mixer signal is multiplied by the \zero" echo signal. In other

words, the echo signals are scaled by either 1 (encode the bit) or 0 (do

not encode bit) or a number in-between 0 and 1 (transition region). Then

the two results are added. Note that the \zero" mixer signal is the binary



a b c d e f g

1 0 1 1 0 0 1

Fig. 5. Divide the cover audio into smaller portions to encode information

a b c d e f g

1 0 1 1 0 0 1

1 0 1 1 0 0 1

d1

d0

Fig. 6. First step in encoding process

inverse of the \one" mixer signal and that the transitions within each

signal are ramps. Therefore, the resulting sum of the two mixer signals is

always unity. This gives us a smooth transition between portions encoded

with di�erent bits and prevents abrupt changes in the resonance of the

stego audio, which would be noticeable. A block diagram representing

the entire encoding process is illustrated in Figure 8.

6 Decoding

Information is embedded into an audio stream by echoing the cover audio

with one of two delay kernels as discussed in Section 5. A binary one is

represented by an echo kernel with a �1 second delay. A binary zero is

represented with a �0 second delay. Extraction of the embedded text

involves the detection of spacing between the echoes. In order to do this,

we examine the magnitude (at two locations) of the autocorrelation of

the encoded signal's cepstrum (Appendix B). The following procedure

is an example of the decoding process. We begin with a sample signal

which is a series of impulses such that the impulses are separated by a

set interval and have exponentially decaying amplitudes. The signal is

zero elsewhere (Figure 9).

We echo the signal once with delay � using the kernel depicted in Fig-

ure 10. The result is illustrated in Figure 11.

The next step is to �nd the cepstrum (Appendix A) of the echoed version.

Taking the cepstrum \separates" the echoes from the original signal.

The echoes are located in a periodic fashion dictated by the o�set of the

given bit. As a result, we know that the echoes are in one of two possible

locations (with a little periodicity).



a b c d e f g

1 0 1 1 0 0 1

0

1

0

1

ONE  MIXER SIGNAL

ZERO  MIXER SIGNAL

Fig. 7. Mixer Signals

Original

    Signal

Encoded

    Signal

"zero" mixer signal

     (1 - "one" mixer signal)

"one" mixer signal

"zero" kernel

"one" kernel

Fig. 8. Encoding process

Unfortunately, the result of the cepstrum also \duplicates" the echo every

� seconds. In Figure 12, this is illustrated by the impulse train in the

output. Furthermore, the magnitude of the impulses representing the

echoes are small relative to the cover audio. As such, they are di�cult

to detect. The solution to this problem is to take the autocorrelation of

the cepstrum.

The autocorrelation gives us the power of the signal found at each delay.

With the echoes spaced periodically every �1 or �0, we will get a \power

spike" at either �1 or �0 in the cepstrum. This spike is just the power

(energy squared) at echo spacings of �1 or �0. The decision rule for each

bit is to examine the power at �0 and �1 in the cepstrum and choose

whichever bit corresponds to a higher power level (see Figure 13).



a

4

2

3
a

a

a

Fig. 9. Example signal: x[n] = anu[n]; 0 < a > 1

1

δ

1

Fig. 10. Echo kernel used in example

δ

original

echo

Fig. 11. Echoed version of the example signal



cepstrum

cepstrum

δ δ δ δ

δ δ δ δ

cepstrum of encoded signal

original signal

echo kernel

δ

Fig. 12. Cepstrum of the echo-encoded signal

7 Results

Using the methods described, we can encode and decode information in

the form of binary digits in an audio stream with minimal degradation at

a data rate of about 16 bps2 By minimal degradation, we mean that the

output of the encoding process is changed in such a way that the average

human cannot hear any objectionable distortion in the stego audio. In

most cases the addition of resonance gives the signal a slightly richer

sound.

Using a series of sound clips provided by ABC Radio, we have obtained

encouraging results. The sound clips cover a wide range of sound types

including music, speech, a combination of both, and sporadic sound (mu-

sic or speech separated by empty space or noise). We created a tool to

test these clips over a wide range of parameter settings in order to char-

acterize the echo hiding process. Running the characterizations on 20

sound clips of varying content and length, we discovered that the rela-

tive volume of the echo (decay rate) was the most important parameter

with regards to the embedded text recovery rate. With 85% chosen as

a minimally acceptable recovery rate (de�ned in Equation 1) all stego

signals showed acceptable accuracy with a decay rate (relative volume of

the echo compared to the original signal) between 0.3 and 0.85.

2 This is dependent on sampling rate and the type of sound being encoded. 16bps is a

typical value, but the number can range from 2bps-64bps.



AUTOCEPSTRUM
AUTOCORRELATION
CEPSTRUM

A
M

P
LI

T
U

D
E

TIME (SECONDS)

(A) ZERO (FIRST BIT)

18

16

6

4

2

0
0 0.0004 0.0006 0.0008 0.00100.0002 0.0012 0.0014 0.0016 0.0018 0.0020

TIME (SECONDS)

(B) ONE (FIRST BIT)

AUTOCEPSTRUM
AUTOCORRELATION
CEPSTRUM

A
M

P
LI

T
U

D
E

18

16

6

4

2

0
0 0.0004 0.0006 0.0008 0.00100.0002 0.0012 0.0014 0.0016 0.0018 0.0020

Fig. 13. Result of autocorrelation

recovery rate =
(number of bits correctly decoded) � 100

number of bits placed
(1)

At 0.5 and 0.6, few can resolve the echoes. While these results are en-

couraging, we would like to push the relative volume down even more.

Between 0.3 and 0.4 even those with exceptional hearing have di�culty

noticing a di�erence. We observed that in general the recovery rate was

linearly related to the relative volume. However in certain cases, we ob-

served deviations from this general rule, caused by the particular struc-

ture of the speci�c sound signal. Figures 14 through 17 illustrate the

correlation (for three select �les) between relative volume and embedded



text recovery rate. The sound �les chosen are representative of the entire

set of sound clips. For the plots provided in this paper, the sample most

amenable to encoding by Echo Hiding (a6, a segment of popular music),

the sample least amenable to encoding (a1, a spoken news broadcast),

and one mid-range sample (a14, spoken advertising copy) were used.

In general, the more di�cult samples are typically the ones with large

\gaps" of silence (similar to a1, the example of unproduced spoken word)

while those easiest to encode are those without such \gaps" (similar to

example a6, the popular music clip).

Initially, we tested the process in a closed-loop environment (encoding

and decoding from a sound �le). The results are illustrated in Figure 14.

All the �les reached the 85% mark with relative volumes less than or

equal to 0.8. a6 required a relative volume of only 0.3 to recover an

acceptable number of bits. By 0.4, we were able to recover 100% of the

hidden bits. a1 and a14 required a higher relative volume of 0.5 in order

to achieve the 85% mark.

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc

ur
ac

y 
(%

 o
f c

or
re

ct
ly

 d
ec

od
ed

 b
its

)

Relative Volume

Accuracy VS. Relative Volume: Closed-loop, n=1, o=0.001, d=0.0013, fft=1024, bps=4

Acceptable
a1
a6

a14

Fig. 14. Accuracy vs. relative volume: closed-loop

We also tried encoding on one machine, transmitting the sound �le over

an analog wire (with appropriate D/A and A/D conversions, and de-

coding on another machine (Figure 15). The required relative volume of

a14 increased to 0.8. Both a1 and a14 experienced a noticeable decrease



in accuracy at higher relative volumes, but an acceptable recovery rate

could still be reached. a6 was approximately the same except that the

100% mark was not reached until 0.5.

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

ur
ac

y 
(%

 o
f c

or
re

ct
ly

 d
ec

od
ed

 b
its

)

Relative Volume

Accuracy VS. Relative Volume: Wire, n=1, o=0.001, d=0.0013, fft=1024, bps=4

Acceptable
a1
a6

a14

Fig. 15. Accuracy vs. relative volume: Analog wire

After testing an analog connection between two machines, we experi-

mented with compression and decompression before decoding. We used

two compression methods: MPEG (Figure 16) and SEDAT (Figure 17).

The SEDAT compression was done with a test �xture provided by ABC

Radio. In both cases, the recovery rate of a1 and a14 signi�cantly de-

creased. a6 was only slightly e�ected by the compression and decom-

pression.

The other parameters (number of echoes, o�set, and delta), seemed to

produce acceptable results regardless of their value. This does not, by

any means, indicate that these parameters are useless. Instead, these pa-

rameters play a signi�cant role in the perceivability of the synthetic reso-

nances. These interactions are in some cases highly non-linear, and better

models of them are an area of continuing research. As discussed earlier

(Section 4), a smaller o�set and delta result in an increased \blending"

of the resonances with the cover audio making it increasingly di�cult for

the human observer to resolve the echo and the cover audio as two dis-

tinct signals. O�sets greater than 0.5 milliseconds produced acceptable



40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc

ur
ac

y 
(%

 o
f c

or
re

ct
ly

 d
ec

od
ed

 b
its

)

Relative Volume

Accuracy VS. Relative Volume: MPEG, n=1, o=0.001, d=0.0013, fft=1024, bps=4

Acceptable
a1
a6

a14

Fig. 16. Accuracy vs. relative volume: analog wire and MPEG

recovery rates. The average listener cannot resolve the echoes with an

o�set of 0.001 seconds. Below a 0.5 millisecond o�set, even the decoder

had di�culty distinguishing the echo from the cover audio.

Extensive testing reveals that the two most important echo parameters

are relative volume (decay rate) and o�set. The relative volume controls

the recovery rate. While the o�set is the major factor in the perceptibility

of the modi�cations.

The results illustrated in Figures 14 through 17 were obtained at sam-

pling rates of 44.1 kHz (closed-loop) and 10 kHz (wire, MPEG, and

SEDAT). Other sampling rates tested include 8 kHz, 16 kHz, and 22.05

kHz all yielding similar (but appropriately scaled) results.

As can be seen, echo hiding performs very well in situations where there

is no additional degradation (such as that produced by D/A, line noise

or lossy encoding). In this respect, its performance is similar to many

existing techniques. It's strength lies in its reasonable performance even

in the much more challenging cases where such degradation is present.

At the present time, echo hiding works best on sound �les without gaps of

silence. This is unsurprising as it is di�cult to analyze and recover echoes

in regions of silence (such as inter-word pauses in speech). We are working

on various thresholding techniques to try to avoid these di�culties by

encoding only those areas where there is sound, and skipping areas of



40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc

ur
ac

y 
(%

 o
f c

or
re

ct
ly

 d
ec

od
ed

 b
its

)

Relative Volume

Accuracy VS. Relative Volume: SEDAT, n=1, o=0.001, d=0.0013, fft=1024, bps=4

Acceptable
a1
a6

a14

Fig. 17. Accuracy vs. Relative volume: analog wire and SEDAT

silence completely.

8 Future Work

Echo hiding can e�ectively place imperceivable information into an audio

data stream. Nevertheless, there is still room for improvement. We have

been examining the use of di�erent echoing kernels and their e�ect on

recovery accuracy and echo perceivability. In particular, we are actively

researching both multi-echo kernels (adding another level of redundancy)

and pre-echo kernels (echoing in negative time). With the old kernels,

we are modifying the encoding process to be self-adaptive. Completion

of these modi�cations will allow the encoding program to decide which

parameters yield the highest recovery rate given the user's constraints

on perceptibility and sound degradation. In addition, we will use echo

hiding as a method for placing caller identi�cation type information in

real time over 8-bit, 8 kHz, analog phone lines.

9 References

1. W. Bender, D. Gruhl, N. Morimoto, \Techniques for data hiding,"

Proc. of the SPIE, 2420:40, San Jose, CA., 1995.



2. R. C. Dixon, Spread Spectrum Systems, John Wiley & Sons, Inc.,

1976.

3. L. R. Rabiner and R. W. Scha�er, Digital Processing of Speech Signal,

Prentice-Hall, Inc., NJ, 1975.

4. A. V. Oppenheim and R.W. Scha�er, Discrete-Time Signal Processing,

Prentice Hall, Inc., NJ, 1989.

Appendix

Much of the following short tutorial was derived from Oppenheim and

Scha�er's Discrete-Time Signal Processing. Please refer to the original

for a more complete discussion.

A Cepstrums

Cepstral analysis utilizes a form of a homomorphic system which con-

verts the convolution operation to an addition operation. As with most

homomorphic systems, the cepstrum can be decomposed into a canon-

ical representation consisting of a cascade of three individual systems.

These systems are the fourier transform (F), the complex logarithm (see

Section C), and the inverse fourier transform (F�1) as depicted in Fig-

ure 18.

ln  (x)F F
-1 cepstrumsignal

Fig. 18. Canonical representation of a cepstrum

The operational conversion is the result of a basic mathematical property:

The log of a product is the sum of the individual logs and multiplication

in the frequency domain is identical to convolution in the time domain.

To exploit this fact, we use the �rst system in the canonical representa-

tion of the cepstrum to place us in the frequency domain by taking the

fourier transform. In the frequency domain, the desired modi�cations are

linear. The next system is a linear, time-invariant (LTI) system which

takes the complex logarithm of the product of two functions. This simply

becomes the sum of the logarithms. It is analogous to using a slide rule.

In fact, the principle is the same. Multiplication becomes simple addition

by �rst taking the logarithm. The �nal system puts us back in the origi-

nal (time) domain. In order to express the \conversion" mathematically,

let's convolve two �nite signals x1[n] and x2[n].



y[n] = x1[n] � x2[n] (2)

After taking the fourier transform of y[n], we get:

Y (e
j

) = X1(e

j

)X2(e

j

) (3)

Now, we take the complex log of Y (ej
):

log Y (e
j

) = log(X1(e

j

)X2(e

j

)) = logX1(e

j

) + logX2(e

j

) (4)

Finally, we take the inverse fourier transform.

F
�1
(log Y (e

j

)) = F

�1
(logX1(e

j

)) + F

�1
(logX2(e

j

)) (5)

By the de�nition of the cepstrum, this becomes (where ~x[n] is the cep-

strum of x[n]):

~y[n] = ~x1[n] + ~x2[n] (6)

Figure 19 illustrates the entire conversion process.

+
cepstrum of y[n]

cepstrum of x[n]

-1
F (x)ln

Fx[n] * y[n]

X(z) x Y(z) ln(X(z)Y(z)) = ln(X(z)) + ln(Y(z))

Fig. 19. Conversion of convolution in the time domain to the equivalent cepstral ad-

dition while still in the time domain

The inverse cepstrum is the reverse of the process described above and

is depicted in Figure 20.

cepstrum
F

-1 e
x

F
signal

Fig. 20. Inverse cepstrum (canonical representation)



B Autocorrelation using cepstrums

Autocorrelation can be done while taking the cepstrum. Recall that the

autocorrelation of any function x[n] is de�ned as:

Rxx[n] =

+1X

m=�1

x[n+m]x[m] (7)

With a change of variable (letting k=n+m and substituting m=k-n), the

equation for the autocorrelation of a given function x[n] becomes:

Rxx =
X

x[k]x[k � n] (8)

Now let's rearrange the second term in the summation (the x[k-n] term)

so that:

Rxx =
X

x[k]x[�(n� k)] (9)

Recall that convolution is de�ned as:

x[n] � h[n] =

+1X

k=�1

x[k]h[n � k] (10)

There is a similarity between the convolution equation (Equation 10)

and the \modi�ed" autocorrelation equation (Equation 9). The only dif-

ference is the negation of time in the second term of the autocorrelation

equation. Mathematically speaking, the autocorrelation equation can be

represented as:

Rxx = x[n] � x[�n] (11)

If a signal is self-symmetric, x[-n] is identical to x[n] by de�nition. There-

fore, the autocorrelation of a self-symmetric signal becomes:

Rxx = x[n] � x[n] (12)

In the frequency domain (i.e. after taking the fourier transform of the

inputs), this becomes:

Sxx(e
j

) = (X(e

j

))
2

(13)

Using cepstrums, the autocorrelation of a self-symmetric function can be

found by �rst taking the cepstrum of the function and then squaring the

result. The steps in this process are depicted in Figure 21 and Figure 22.

Before we square the cepstrum, we �rst take the fourier transform. Then

afterwards, we take the inverse fourier transform. The reason is the same

as when we were �nding the cepstrum (Appendix A). The fourier trans-

form places us in the frequency domain where modi�cations are linear. A

linear system (x2) actually performs the operation. Finally, the inverse

fourier places us back in the time domain. The inverse fourier transform



F
-1

x[n]
F

ln (x) Cepstrum on x[n]

Fig. 21. The �rst step in �nding the Cepstral Autocorrelation is to �nd the cepstrum

of x[n]

x
2

F
-1

F xx
RCepstrum of x[n]

Fig. 22. Once we have the cepstrum, we square it

x[n] F ln  (x) x
2

F
-1

R
xx

Fig. 23. Systems representation of Cepstral Autocorrelation

from step one (Figure 21) and the fourier transform from step two (Fig-

ure 22) will cancel each other when combined. In the end, we are left

with the system shown in Figure 23.

Autocorrelation is an order n2 operation. Using the system in Figure 23,

the operation is reduced to a n log(n) operation. Thus for large n, �nding

the autocorrelation while taking the cepstrum is much more e�cient.

C Complex Logarithm

The fourier transform is a complex function of !. It can be decomposed

into magnitude and phase/angle terms. Thus, if we have some �nite

signal x[n], the Fourier transform can be represented as a magnitude

and an angle:

X(e
j

) = jX(e

j

)je

jARGX(ej
 )
(14)

ARG (angle modulus 2�) is used instead of arg (angle) since adding 2�

(where n is any arbitrary integer) to an angle has no e�ect:

e
j(x+2n�)

= e
jx
e
j2n�

= e
jx
(cos 2n� + j sin 2n�) = e

jx
(15)

In most cases, the phase will be a non-zero value. Therefore, we can

not use the natural logarithm when taking the cepstrum (Figure 18).

Instead, we must use the complex logarithm which is de�ned as:

logX(ej
) = log(jX(ej
)jejARGX(ej
 )) (16)



Once again (as in Appendix A) we exploit the fact that the log of a

product is identical to the sum of the individual logs:

logX(e
j

) = log(jX(e

j

)j) + log(e

jARGX(ej
 )
) (17)

Exploiting that log and ex are inverses, we get:

logX(e
j

) = log jX(e

j

)j+ jARGX(e

j

) (18)

In order to further motivate the idea of converting from convolution to

addition, let's mathematically re-examine Appendix A in light of the

complex logarithm. We begin by �rst convolving two �nite signals x1[n]

and x2[n]:

y[n] = x1[n] � x2[n] (19)

Convolution becomes multiplication in the frequency domain:

Y (e
j

) = X1(e

j

)X2(e

j

)) (20)

Taking the complex log:

log Y (e
j

) = log(X1(e

j

)X2(e

j

) (21)

Finding the mathematical equivalent:

log Y (ej
) = log(X1(e
j
)) + log(X2(e

j
)) (22)

Now, we can substitute the result from Equation 17 and rearrange to

get:

log Y (e
j

) = (log jX1(e

j

)j+log jX2(e

j

)j)+(jARG(X1(e

j

))+jARG(X2(e

j

)))

(23)

The use of the complex logarithm in cepstral analysis allows the addition

of signal components instead of the convolution of the signals.

This article was processed using the LATEX macro package with LLNCS

style


